20 research outputs found

    PT-symmetric operators and metastable states of the 1D relativistic oscillators

    Full text link
    We consider the one-dimensional Dirac equation for the harmonic oscillator and the associated second order separated operators giving the resonances of the problem by complex dilation. The same operators have unique extensions as closed PT-symmetric operators defining infinite positive energy levels converging to the Schroedinger ones as c tends to infinity. Such energy levels and their eigenfunctions give directly a definite choice of metastable states of the problem. Precise numerical computations shows that these levels coincide with the positions of the resonances up to the order of the width. Similar results are found for the Klein-Gordon oscillators, and in this case there is an infinite number of dynamics and the eigenvalues and eigenvectors of the PT-symmetric operators give metastable states for each dynamics.Comment: 13 pages, 2 figure

    Effective Hamiltonian with holomorphic variables

    Full text link
    The pure-quantum self-consistent harmonic approximation (PQSCHA) permits to study a quantum system by means of an effective classical Hamiltonian. In this work the PQSCHA is reformulated in terms of the holomorphic variables connected to a set of bosonic operators. The holomorphic formulation, based on the olomorphic path integral for the Weyl symbol of the density matrix, makes it possible to directly approach general Hamiltonians given in terms of bosonic creation and annihilation operators.Comment: Proceedings of the Conference "Path Integrals from peV to TeV - 50 Years from Feynman's paper" (Florence, August 1998) -- 2 pages, ReVTe

    Effective Hamiltonian with holomorphic variables

    Full text link
    The pure-quantum self-consistent harmonic approximation (PQSCHA) permits to study a quantum system by means of an effective classical Hamiltonian - depending on quantum coupling and temperature - and classical-like expressions for the averages of observables. In this work the PQSCHA is derived in terms of the holomorphic variables connected to a set of bosonic operators. The holomorphic formulation, based on the path integral for the Weyl symbol of the density matrix, makes it possible to approach directly general Hamiltonians given in terms of bosonic creation and annihilation operators.Comment: 11 pages, no figures (2nd version: few mistakes fixed in Sects. IV-V

    PAVEL: Decorative Patterns with Packed Volumetric Elements

    Full text link
    Many real-world hand-crafted objects are decorated with elements that are packed onto the object's surface and deformed to cover it as much as possible. Examples are artisanal ceramics and metal jewelry. Inspired by these objects, we present a method to enrich surfaces with packed volumetric decorations. Our algorithm works by first determining the locations in which to add the decorative elements and then removing the non-physical overlap between them while preserving the decoration volume. For the placement, we support several strategies depending on the desired overall motif. To remove the overlap, we use an approach based on implicit deformable models creating the qualitative effect of plastic warping while avoiding expensive and hard-to-control physical simulations. Our decorative elements can be used to enhance virtual surfaces, as well as 3D-printed pieces, by assembling the decorations onto real-surfaces to obtain tangible reproductions.Comment: 11 page

    States of the Dirac equation in confining potentials

    Full text link
    We study the Dirac equation in confining potentials with pure vector coupling, proving the existence of metastable states with longer and longer lifetimes as the non-relativistic limit is approached and eventually merging with continuity into the Schr\"odinger bound states. We believe that the existence of these states could be relevant in high energy model construction and in understanding possible resonant scattering effects in systems like Graphene. We present numerical results for the linear and the harmonic cases and we show that the the density of the states of the continuous spectrum is well described by a sum of Breit-Wigner lines. The width of the line with lowest positive energy, as expected, reproduces very well the Schwinger pair production rate for a linear potential: we thus suggest a different way of obtaining informations on the pair production in unbounded, non uniform electric fields, where very little is known.Comment: 4 page

    Perturbation Theory for Metastable States of the Dirac Equation with Quadratic Vector Interaction

    Full text link
    The spectral problem of the Dirac equation in an external quadratic vector potential is considered using the methods of the perturbation theory. The problem is singular and the perturbation series is asymptotic, so that the methods for dealing with divergent series must be used. Among these, the Distributional Borel Sum appears to be the most well suited tool to give answers and to describe the spectral properties of the system. A detailed investigation is made in one and in three space dimensions with a central potential. We present numerical results for the Dirac equation in one space dimension: these are obtained by determining the perturbation expansion and using the Pad\'e approximants for calculating the distributional Borel transform. A complete agreement is found with previous non-perturbative results obtained by the numerical solution of the singular boundary value problem and the determination of the density of the states from the continuous spectrum.Comment: 10 pages, 1 figur
    corecore